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Background: Neuronal oscillations are linked to symptoms of Parkinson's disease. This relation can be
exploited for optimizing deep brain stimulation (DBS), e.g. by informing a device or human about the
optimal location, time and intensity of stimulation. Whether oscillations predict individual DBS outcome
is not clear so far.
Objective: To predict motor symptom improvement from subthalamic power and subthalamo-cortical
coherence.
Methods: We applied machine learning techniques to simultaneously recorded magnetoencephalogra-
phy and local field potential data from 36 patients with Parkinson's disease. Gradient-boosted tree
learning was applied in combination with feature importance analysis to generate and understand out-
of-sample predictions.
Results: A few features sufficed for making accurate predictions. A model operating on five coherence
features, for example, achieved correlations of r > 0.8 between actual and predicted outcomes. Coherence
comprised more information in less features than subthalamic power, although in general their infor-
mation content was comparable. Both signals predicted akinesia/rigidity reduction best. The most
important local feature was subthalamic high-beta power (20e35 Hz). The most important connectivity
features were subthalamo-parietal coherence in the very high frequency band (>200 Hz) and
subthalamo-parietal coherence in low-gamma band (36e60 Hz). Successful prediction was not due to
the model inferring distance to target or symptom severity from neuronal oscillations.
Conclusion: This study demonstrates for the first time that neuronal oscillations are predictive of DBS
outcome. Coherence between subthalamic and parietal oscillations are particularly informative. These
results highlight the clinical relevance of inter-areal synchrony in basal ganglia-cortex loops and might
facilitate further improvements of DBS in the future.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parkinson's disease is a common neurodegenerative disease,
affecting approximately 6.1 M people worldwide [1]. Besides
pharmacological agents such as levodopa, deep brain stimulation
(DBS) is used for symptomatic treatment of Parkinson's disease. A
common target structure for DBS is the subthalamic nucleus (STN)
cience and Medical Psychol-
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which is interconnected with the pallidum, the thalamus and
several cortical areas via basal-ganglia cortex loops [2]. In patients
with Parkinson's disease, activity in these loops is characterized by
strong neuronal oscillations, synchronized across the connected
structures [3].

Neuronal oscillations are closely related to Parkinsonian symp-
toms. STN beta oscillations (13e35 Hz), in particular, have been
shown to reflect the motor state [4]. They are reduced by voluntary
movement, pharmacological therapy and DBS [5e10]. High-gamma
oscillations (60e90 Hz), in contrast, are a marker of dyskinesia,
typically arising as a side-effect of dopaminergic therapy [11].
Tremor is associated with narrow-band oscillations at individual
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

DBS deep brain stimulation
FDR false discovery rate
fHFO fast high frequency oscillations (300e400 Hz)
FOOOF fitting oscillations and one over f
LFP local field potential
MEG magnetoencephalography
RMSE root mean squared error
sHFO slow high frequency oscillations (200e300 Hz)
STN subthalamic nucleus
UPDRS Unified Parkinson's disease Rating Scale
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tremor frequency, observable throughout a distributed subcortico-
cortical tremor network [12,13]. Given their intricate relationship
with Parkinsonian symptoms, recent studies have explored the
utility of neuronal oscillations for optimizing DBS.

Most of these studies have focused on the dynamics of elec-
trophysiological signals and used oscillations for adapting DBS to
spontaneous changes of symptom severity, such as on-off-
fluctuations [14] or tremor [15,16]. Other studies have assessed
the utility of quasi-stationary oscillatory activity for optimizing
electrode placement, complementary to imaging studies on “sweet
spots” in DBS [17,18]. Zaidel et al. demonstrated a positive linear
correlation between DBS outcome and both the length of the
oscillatory region in the dorsolateral STN and STN beta power [19].

Here, we adopted a similar, though more holistic approach for
exploring the relationship between DBS outcome and neuronal
oscillations. We analyzed simultaneous magnetoencephalography
(MEG) and local field potential (LFP) recordings from Parkinson's
disease patients with externalized leads to assess both STN oscil-
lations and their synchrony with cortical activity. By applying ma-
chine learning techniques, we demonstrate that it is possible to
predict DBS outcome for unseen patients based on their patterns of
neuronal synchrony, considering many frequency bands and brain
areas simultaneously.

2. Materials and methods

The aim of this study was to predict motor symptom reduction
achieved by DBS based on band-limited STN power and STN-cortex
coherence. For this purpose, we trained and evaluated a machine
learning model operating on features extracted from MEG-LFP
datasets, contributed by two previous studies performed at the
University Hospital Düsseldorf [20,21]. Both studies recruited pa-
tients with Parkinson's disease selected for DBS of the STN ac-
cording to standard clinical criteria.

2.1. Patient and measurement details

36 Parkinson's disease patients implanted with deep brain
electrodes for STN DBS the day before the measurement took part
with written informed consent, according to the Declaration of
Helsinki. Patient details are given in Table S1 of the Supplementary
Material. The experimental protocols were approved by the Ethics
Committee of the Medical Faculty of Heinrich Heine University
Düsseldorf (no. 3209 and 5608).

The experimental procedures have been described elsewhere
[20,21]. Briefly, MEG signals were recorded by a 306-channel MEG
system (Elekta Neuromag) with a sampling rate of 2 kHz (study 1)
or 2.4 kHz (study 2). LFPs were recorded simultaneously using
externalized leads and a mastoid reference. LFP signals were
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arranged into a bipolar montage offline. The cables used for
externalization contained very little ferromagnetic material and did
not cause major MEG artifacts. Forearm electromyograms as well as
vertical and horizontal electrooculograms were recorded in addi-
tion. Patients were at rest in an upright position, with eyes open.
The measurements took place after overnight withdrawal from
dopaminergic medication (Med OFF). In a subset of patients, we
performed additional recordings about 1 h after intake of levodopa
(Med ON). Here, we analyzed the Med OFF data only.

The Unified Parkinson's Disease Rating Scale (UPDRS) part III of
the Movement Disorders Society [22] was obtained by an experi-
enced movement disorder specialist following optimization of DBS
parameters. In most cases, scoring took place between 3 and 6
months after the LFP-MEG measurements (Table S1, Supplemen-
tary Material).

2.2. Data analysis

The general analysis pipeline is depicted in Fig. 1. It contained
one sub-pipeline for feature extraction (Fig. 1A) and one for pre-
diction (Fig. 1B).

2.2.1. Contact selection
First, we selected one electrode contact pair for each hemisphere

by picking the contact used for therapeutic DBS at the time of UPDRS
assessment and the closest neighboring contact in the direction of
the midpoint between the most ventral and the most dorsal contact.
This choice was adapted in case therapeutic DBS was bipolar or in
case the initial choice included bad LFP channels, i.e. channels with
strong noise/weak signal. In the former case, we selected the bipolar
pair used for therapeutic DBS, and in the latter case, we took the
closest neighbor of the bad channel in the direction of the electrode
center. In case a group of segments was used for DBS in patients
implanted with segmented leads, we first re-referenced the signal of
each active segment from the original mastoid reference to the
closest neighbor, computed features separately and averaged over
segments. Lead localization, performed with LEAD DBS [23],
confirmed correct placement for all electrodes under study (Fig. 2A).

2.2.2. Data preprocessing
The data were preprocessed with the Fieldtrip toolbox [24]. LFP

and MEG data underwent visual screening. Bad channels and
epochs containing artifacts were discarded. The data were
segmented into 2s windows (frequency resolution: 0.5 Hz) with
50% overlap.

2.2.3. STN power
We applied a Hanning taper and computed power for each

integer frequency between 1 and 398 Hz using Welch's method.
Line noise and its harmonics were eliminated by replacing
values ± 2 Hz from the harmonics by surrogate values obtained by
linear interpolation. The aperiodic (1/f) component was removed
from the LFP power spectra using the fitting oscillations and one over
f (FOOOF) algorithm [25]. This stepwas necessary to ensure that the
predictive models operated on neuronal oscillations proper. Note
that coherence, unlike power, is a normalized quantity not
requiring this correction. When applying FOOOF, we adapted its
parameters iteratively until a good fit was achieved, confirmed
visually for every case. Since a good description of the entire
spectrum was usually not achievable with a single model, we per-
formed separate fits for the frequency ranges below 90 Hz and
above 200 Hz (frequencies between 90 and 200 Hz were not
analyzed here). The periodic minus the aperiodic component was
retained and power was averaged within eight frequency bands of
interest: delta/theta (3e7 Hz), alpha (8e12 Hz), low-beta



Fig. 1. Analysis pipeline. (A) Feature extraction. Following contact selection, STN power and STN-cortex coherence were computed from the Fourier spectrum. STN power un-
derwent 1/f-correction and was averaged within frequency bands. STN-cortex coherence was source-localized using beamforming. Each source was assigned to one of 30 cortical
parcels and source coherence was averaged within parcels and frequency bands. Band-limited STN power and STN-cortex coherence formed the hemisphere feature vector. (B)
Leave-one-out regression. Left and right hemisphere feature vectors were stacked vertically to form the subject feature vector. The subject feature vectors were stacked horizontally
to form the feature matrix. In each iteration through the leave-one-out cycle, one subject was set aside (test set). The remaining train set was divided into 3 folds for cross-validated
hyper-parameter tuning and feature selection. The test features served as input to the regression model, which predicted UPDRS III sum score reduction.
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(13e20 Hz), high-beta (21e35 Hz), low gamma (36e60 Hz), high-
gamma (60e90 Hz), slow high-frequency oscillations (sHFO;
200e300 Hz) and fast high-frequency oscillations (fHFO;
300e400 Hz).
2.2.4. STN-cortex coherence
Coherence was estimated and localized once per frequency

band rather than once per frequency. Using the multitaper method
[26], we computed coherence at the band center frequency and
applied appropriate spectral smoothing to include the entire band.
For bands covering line noise harmonics, we computed estimates
for sub-bands, excluding the harmonics, and averaged them.
Coherence was source-localized using Dynamic Imaging of
Coherent Sources [27]. We made use of realistic, single-shell head
models based on the individual, T1-weighted MR image. The
beamformer grid contained 567 locations spread out evenly across
the cortical and cerebellar surface. It was aligned to Montreal
Neurological Institute (MNI) space, allowing for grid parcellation
into 30 supersets of regions defined in the Automatic Anatomic
Labeling (AAL) atlas [28]. Details on these regions are provided in
Table S2 of the Supplementary Material.

Following feature extraction, features were arranged into a
feature matrix of size Npatients x Nfeatures (Fig. 1). In this matrix, each
subject was represented by one column comprising both STN po-
wer and STN-cortex coherence with ipsilateral and contralateral
cortical parcels for both left and right STN. Two alternative designs
were also tested, but found to have inferior performance (Fig. S2 of
the Supplementary Material): one with hemispheres rather than
subjects as unit of observation, and one inwhich hemispheres were
ordered according their laterality with respect to the more affected
body side.
794
2.2.5. Machine learning model
For predicting motor improvement, we employed extreme

gradient boosting, as implemented in the XGBoost package for
Python [29]. In this framework, the target score is predicted by a
sequence of decision trees assembled tree-by-tree during training.
Each new tree is trained on the error made by the group assembled
so far, resulting in a stepwise refinement of the prediction. XGBoost
has gained popularity by winning numerous machine learning
competitions and is a commonly used tool in machine learning. It
appears to be particularly well suited for electrophysiological
datasets [30], which are typically small, structured and noisy. In a
recent study by Merk et al. [31], XGBoost outperformed linear
regression and artificial neural networks in the prediction of grip
force based on STN and cortical oscillations.
2.2.6. Feature importance analysis
Feature importance analysis seeks to describe how much an

individual feature or a subgroup of features contributed to a pre-
diction made by a machine learning model. Here, we quantified
feature importance using the Python implementation of SHapely
Additive exPlanations (SHAP) [32]. SHAP values are estimates of
Shapley values, a concept from cooperative game theory for a fair
distribution of a payout among players. Besides having a range of
desirable mathematical properties, SHAP values have an intuitive
interpretation: they sum to the difference between the current and
the average model output. While the concept is applicable to any
machine learning model, specialized versions such as TreeSHAP
have been developed, optimized for tree ensemble-based models
such as XGBoost [33].



Fig. 2. Spectral characteristics of features. (A) Reconstruction of electrode locations. The subthalamic nucleus is depicted in yellow. (B) STN power, averaged over hemispheres,
below 90 Hz. (C) as (B) for the high frequency range. (D) Group-mean STN-cortex coherence by cortical parcel. The solid lines represent the mean. Shadings represent the standard
error of the mean. The labels “ipsi” and “contra” refer to the subthalamic nucleus. (E) as (D) for the high frequency range (multitaper method, ±5 Hz spectral smoothing). The dotted
black lines indicate the level of ipsi- and contralateral coherence after shuffling data segments in time. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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2.2.7. Predicting DBS outcome
DBS outcome was quantified by the difference in UPDRS III sum

score Med OFF/Stim OFF - Med OFF/Stim ON, unless specified
otherwise. Predictions were computed sequentially for each subject
in a leave-one-out fashion, i.e. each subject served as the test set
once and was part of the train set in all other iterations. In each
iteration through the leave-one-out loop, featureswere standardized
using mean and variance of the train set. Next, we selected the most
important k features according to the mean absolute SHAP values
computed on the train set. The train set was then sub-divided into
three folds for cross-validated hyper-parameter tuning with the
Hyperopt package [34]. The optimization procedure and the chosen
parameters are detailed in the Supplementary Material.

Model performance was quantified by the root mean squared
error (RMSE) and Pearson's correlation coefficient between the
actual and the predicted DBS outcome. We further applied a null
model agnostic of electrophysiology for establishing a performance
baseline. The null model generated predictions of DBS outcome by
averaging the outcomes of the train set.

2.3. Statistics

Significance of correlation was assessed using the pearsonr
function of the scipy.stats package (two-sided test; statistic: b;
significance level: 0.05). When computing the correlation coeffi-
cient repeatedly, we applied false discovery rate (FDR) correction
using the Benjamini-Hochberg procedure.

3. Results

3.1. Features

The spectral and spatial characteristics of the features are illus-
trated in Figs. 2 and 3, respectively. STN power spectra contained
peaks in the alpha, low-beta and high-beta band. Individual patients
showed an additional high-gamma peak (Fig. 2B). The HFO spectrum
was dominated by sHFO peaks, as described previously for the
medication OFF state (Fig. 2C) [35,36]. The coherence spectra con-
tained strong alpha peaks, which were ubiquitous but most pro-
nounced in temporal areas ipsilateral to the STN (Fig. 2D). Medial
sensorimotor and adjacent areas ipsilateral to the STN additionally
showed strong beta peaks, as reported by previous studies (Fig. 3)
[20,37]. The coherence spectra did not contain any consistent HFO
Fig. 3. Source-localized STN-cortex coherence. Coherence was normalized by the spatial m
the hemisphere ipsilateral the STN ended up on the right side. Normalized coherence is color
gamma: 36e60 Hz; high-gamma: 60e90 Hz; sHFO: 200e300 Hz; fHFO; 300e400 Hz. (For in
Web version of this article.)

796
peaks (Fig. 2E), but some subjects had more coherence in this range
than others (Fig. S1 of the Supplementary Material). Finally, many
coherence spectra had several narrow peaks in the delta/theta range,
presumably reflecting tremor, occurring at slightly different fre-
quencies in individual patients [12,13].

3.2. Model performance

We evaluated the performance of predictive models operating
either on STN-cortex coherence (connectivity models) or STN po-
wer (local models) as a function of the number of features. In order
to test whether the model predicted DBS benefit or symptom
severity better, we predicted both the difference between the DBS
OFF and the DBS ON score (benefit) and the DBS OFF score
(symptom severity) separately. Note that all UPDRSIII scores were
collected several months after surgery (Table S1).

When predicting DBS benefit, both connectivity and local
models outperformed the null model, which estimated DBS
outcome by averaging the outcomes of the train set (Fig. 4A;
RMSENull: 6.74). Connectivity-based models outperformed the null
model even with a single feature and generally performed better
than local models (avg. RMSEconn: 5.1, avg. rconn: 0.64). Local models
required at least four features to achieve better performance than
the null model and a significant correlation between predicted and
actual DBS outcomes (Fig. 4B; avg, RMSElocal: 6.0, avg. rlocal: 0.42).

The OFF score was not predicted as accurately as DBS benefit.
Connectivity models could not perform this task at all (Fig. 4C and
D; RMSEnull_off: 11.09; avg. RMSEconn: 13.42, avg. rconn: �0.10). Local
models operating on 3e6 STN power features, however, achieved a
significant correlation between actual and predicted DBS OFF
scores (Fig. 4D; RMSEnull_off: 11.09; RMSElocal_5: 9.04, rlocal_5: 0.55).

3.3. Feature importance

This analysis aimed at revealing the most important features for
successfully predicting clinical benefit. To assess feature impor-
tance, we summed absolute SHAP values over all models contrib-
uting to the previous analysis (Fig. 4) and within categories of
interest such as frequency band (Fig. 5A and B), brain region
(Fig. 5C) and hemisphere with respect to the STN (Fig. 5D). For local
models, STN high-beta power was the most important feature,
followed by alpha and sHFO power (Fig. 5A). Strong high-beta po-
wer indicated a good DBS outcome. Strong beta-band coherence, in
ean prior to averaging over hemispheres. Whole-brain images were flipped such that
-coded. Theta: 3e7 Hz; alpha: 8e12 Hz; low-beta: 13e20 Hz; high-beta: 21e35 Hz; low
terpretation of the references to color in this figure legend, the reader is referred to the



Fig. 4. Model performance vs. number of features. (A) Root mean squared error as a function of number of features for the prediction of DBS OFF-ON score. (B) Pearson's
correlation coefficient quantifying the correlation between predicted and actual DBS outcome for the prediction of DBS OFF-ON score. Significant correlations are highlighted by
gray shading (p < 0.05, FDR corrected). (C) as (A) for DBS OFF score. (D) as (B) for DBS OFF score. STN local: model operating on STN power features; STN conn: model operating on
STN-cortex coherence features.
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contrast, was not indicative of a good outcome (Fig. 5B). Connec-
tivity models relied mostly on fHFO, low-gamma and theta oscil-
lations. Connectivity with parietal areas was particularly important
(Fig. 5C). As expected, coherence between STN and ipsilateral cor-
tex was more important than coherence between STN and
contralateral cortex (Fig. 5D).

3.4. Combining local and connectivity features

We investigated the potential merit of combining local and
connectivity features when predicting DBS benefit. To simplify
interpretation, we used a fixed feature set rather than running a
Fig. 5. Feature importance. Bars represent absolute SHAP values summed over all model
hemisphere. High bars indicate that features of the corresponding category had a strong imp
feature values within each category. Dark red colors indicate that high feature values consi
feature values consistently drove the prediction towards lower values. (For interpretation of
this article.)
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data-driven selection for each individual subject as above. We
chose the five local and the five connectivity features with the
highest overall SHAP sum (as five was the lowest number for which
both the local and the connectivity models reached good perfor-
mance in the previous analysis). The selected features are listed in
Fig. 6B. As depicted in Fig. 6A, the best-5 connectivity model
(RMSEconn ¼ 3.54, rconn ¼ 0.84, pconn ¼ 1e-14) outperformed the
best-5 local model (RMSElocal ¼ 5.77, rlocal ¼ 0.52, plocal ¼ 0.001).
Adding local features to the connectivity features did not improve
the connectivity model further (RMSEcomb ¼ 3.61, rcomb ¼ 0.84,
pcomb ¼ 1.69e-10).
s and within the corresponding category. (A,B) frequency band. (C) brain region. (D)
act on the prediction. Colors represent the mean correlation between SHAP values and
stently drove the prediction toward higher values. Dark blue colors indicate that high
the references to color in this figure legend, the reader is referred to the Web version of



Fig. 6. Comparing local and connectivity models. (A) Scatter plots showing the correlation between actual and predicted DBS outcome using the five best local features (green),
the five best connectivity features (orange) and the five best local and connectivity features combined (purple). (B) SHAP values for each feature of the combined model. Each dot
represents one subject. High values on the x-axis indicate a strong influence on the prediction in either the negative (SHAP<0) or the positive direction (SHAP>0) relative to the
mean. Normalized feature values are color-coded. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6B illustrates feature importance and the relation between
feature values and feature importance for the combined model.
Connectivity features generally had a stronger impact on the pre-
diction than local features. The strongest influence was attributed
to fHFO coherence between the right STN and ipsilateral inferior
parietal cortex. Low values strongly drove the prediction towards
worse predicted outcomes. Indeed, when relating this feature to
DBS outcome directly, we observed an approximately logarithmic
relationship, i.e. outcomes dropped steeply with decreasing
coherence (log(coherence)-outcome correlation: r ¼ 0.40,
p ¼ 0.02). Feature importance analysis further revealed that strong
coupling between the right STN and ipsilateral parietal cortex and a
weak coupling between the right STN and contralateral parietal
cortex in the low-gamma band drove the prediction toward a good
DBS outcome. So did strong coupling between the left STN and
contralateral, inferior occipital cortex in the theta band and weak
coupling between right STN and temporal cortex in the low-beta
band.

3.5. Feature correlations

Whereas the automatically selected set of most important local
features contained frequency bands with clear peaks and an
established role in Parkinson's disease pathophysiology, such as
the beta and the HFO band, the set of most important connectivity
features did not. To better understand the nature of these features,
we investigated their correlation with all other features (Fig. 7A).
798
Both fHFO and low-gamma coherence with parietal cortex were
strongly correlated with a large set of other features, in particular
>35 Hz connectivity with the entire hemisphere. Replacing each
of the best five connectivity features by their closest correlate,
however, decreased performance substantially (Fig. 7B;
RMSEbest ¼ 3.61, rbest ¼ 0.84, pbest ¼ 1.69e-10; RMSEcorr ¼ 6.47,
rcorr ¼ 0.29, pcorr ¼ 0.09), demonstrating that the selected features
are not arbitrary representatives of a highly correlated feature
group. Destroying true phase relationships by shuffling the LFP
signals in time abolished the ability to predict clinical benefit from
STN-cortex coherence, demonstrating that connectivity models
relied on phase information (Fig. S3 of the Supplementary
Material).

3.6. Control analyses

Given the critical role of lead placement for DBS benefit, we
asked whether themost informative features might reflect distance
to target. None of the best 10 features were significantly correlated
with the distance of the LFP channel to a published “sweet spot” for
STN DBS [38], and distance could not predict clinical benefit on its
own (see Supplementary Material). Similar observations were
made for a set of potential confounders, including recording dura-
tion, electrode type (segmented vs. non-segmented), days passed since
recording and signal-to-noise ratio. We conclude that the success of
the electrophysiological models cannot be explained by correlation
with these variables.



Fig. 7. Correlations and replaceability of the five best connectivity features. (A) Pearson correlation between the five most important connectivity features and all other features.
Correlations were averaged within lobes (frontal, parietal, temporal, occipital) for the sake of readability. (B) Prediction performance for the five best connectivity features, their
strongest correlates and their second strongest correlates.

Fig. 8. Single item prediction. (A) Single item prediction for the local model. (B)
Subset sum score predictions for the local model. (C) As (A) for connectivity model. (D)
As (B) for connectivity model.
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3.7. Predicting improvement of particular symptoms

In the previous analyses, we quantified DBS outcome by the
reduction of the UDPRS III sum score, representing overall motor
symptom severity. To see whether local and connectivity features
relate to particular and possibly different symptoms, we computed
predictions for each individual UPDRS III item (Fig. 8A and C) and
for the akinesia-rigidity, the tremor and the axial subset sum score
(Fig. 8B and D) using the best-5 local and the best-5 connectivity
model described above. The local and the connectivity model had a
very similar RMSE profile. Both predicted the DBS-induced
improvement of akinesia/rigidity best.

4. Discussion

We have demonstrated that is possible to predict DBS outcome
from STN power and STN-cortex coherence in Parkinson's disease
patients. Our results indicate that STN-cortex coherence, in
particular, is a good predictor of clinical benefit.

4.1. Relation to previous studies

Few studies have made out-of-sample predictions of DBS
outcome based on electrophysiological data. We knowof only three
studies, all of which investigated signals fromwithin or nearby the
STN, recorded during surgery [39e41]. Here, we applied a network
799
approach, incorporating both subthalamic oscillations and their
synchrony with oscillatory activity in various cortical areas. In this
respect, our approach can be considered an electrophysiological
pendant of discriminative tractography. This is a technique for
predicting DBS outcome from structural connectivity with the
volume of tissue activated (VTA), an estimate of the spatial extent of
neuromodulation around the active contact. This approach and
related methods have facilitated accurate predictions of DBS
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outcome in many disorders, including Parkinson's disease [42],
obsessive-compulsive disorder [43,44], Tourette's Syndrome [45],
and Essential Tremor [46]. Although structural and functional
connectivity do not necessarily contain redundant information
about DBS outcome [42], structural connectivity forms the basis of
functional connectivity, suggesting that both might predict the ef-
ficacy of DBS in individual patients. In this study, we show that this
is indeed the case. Predicted DBS outcomes, derived from a few
functional connectivity features only, were highly correlated with
the actual outcomes. The null model, which predicted DBS outcome
based on the average outcome in the training set, performedworse,
i.e. knowing the individual electrophysiology helps improving
realistic expectations of DBS outcome.
4.2. The link between DBS outcome and oscillations

Predicting clinical benefit form neuronal oscillations might
work for several reasons. First, exaggerated synchronization itself
has been suggested to cause Parkinsonism [47]. If oscillations were
the causal process, an estimate of how strong the process is around
the stimulation contact might allow for predicting the DBS effect in
the individual patient.

Alternatively, successful prediction might be explained by a
consistent relationship between oscillations and contact location,
which is known to be a crucial factor for DBS. Indeed, beta and HFO
oscillations have a characteristic spatial distribution in the STN area
[48,49]. Here, we found, however, that the distance of an LFP
channel to a published sweet spot for STN DBS had little predictive
power and did not correlate with the most informative oscillatory
features [38]. This is likely a characteristic of our sample, which
includes only the contacts with optimal clinical efficacy, which, in
our case, differed little with respect to placement. Presumably,
locationwould become a crucial piece of information if one were to
include other contacts further off target, e.g. the contacts not
selected for DBS. We could not investigate this here because we
lacked a good characterization of the clinical effect for non-selected
contacts.

It is possible that the prediction relied in part on information
about the ability of DBS to modulate remote cortical areas, which
may be key to the clinical effect of DBS [50]. This would explainwhy
connectivity models performed better than local models and why
they could predict DBS benefit but not symptom severity. Whether
stimulation can reach a relevant anatomical connection might be
relevant for the clinical effect of DBS, but is not relevant for the
patient's motor state off stimulation.

STN-cortex coherence carries information on functional con-
nectivity by definition. In addition, it has recently been demon-
strated to correlate with the density of reconstructed fiber tracts
connecting STN and cortical areas, i.e. it also contains information
on anatomical connectivity [51]. Interestingly, the same study
demonstrated that STN beta oscillations might arise as a conse-
quence of cortical input, implying that even local oscillations can
relate to STN-cortex connectivity.
4.3. Feature importance

In this paper, we applied feature analysis to identify particularly
informative features. This analysis yielded STN high-beta power as
the most import local feature, in line with a recent classification
study in the primate model of PD [52]. The finding further aligns
with a recent study reporting that high-beta oscillatory activity
distinguishes the STN from neighboring structures [51]. STN-cortex
beta coherence, in contrast, was less relevant for prediction. This
observations tallies with studies on dopamine effects, which found
800
no relation between the degree of symptom reduction achieved by
levodopa and the degree of beta coherence reduction [8,53].

While beta coherence with motor cortex did not emerge as a
very important feature, coherence in other frequency bands was
strongly predictive of DBS outcome, even more so than STN high-
beta power. Coherence between the STN and parietal cortex at
high frequencies (low-gamma and fHFO) allowed for accurate es-
timates of DBS efficacy. This is somewhat surprising, given that
these frequency bands did not contain coherence peaks. Despite
this lack of structure and a strong correlation with high-frequency
coupling (>35 Hz) to other cortical areas, these features appear to
be particularly relevant for DBS outcome, as they were not
replaceable without harming performance and lost their predictive
potential through shuffling.

The importance of parietal features points towards a clinical
relevance of parieto-STN connectivity. Yet, in light of the strong
correlation between features, this hypothesis requires confirmation
by independent studies. A number of PET studies have reported
that STN DBS leads to metabolic changes in parietal areas,
evidencing that DBS modulates parietal cortex [54,55]. Further, PD
patients differ from healthy controls in their resting-state BOLD
signal correlation between STN and parietal cortex, suggesting
pathological relevance of this connection [56]. And lastly, both STN
and parietal cortex were proposed to be part of brain network for
response inhibition [57,58]. This network is believed to be lateral-
ized to the right hemisphere [59,60], which might relate to the fact
that all of the important parietal connectivity features identified
here were right STN features, suggesting that left and right STN
might not have the same relation to clinical improvement. The fact
that good predictions required data from both hemispheres further
supports this hypothesis.

4.4. STN power vs. STN-cortex coherence

One research question of this studywas whether STN power and
STN-cortex coherence carry different information about DBS
outcome. Our results do not support this hypothesis. Although local
models did achieve reasonable predictions, adding local features
did not improve the best-performing connectivity models, indi-
cating that the information carried by STN power was already
contained in STN-cortex coherence e even though the frequency
bands were different. Similarly, when predicting single UPDRS
items both local and connectivity models showed a very similar
performance profile, i.e. the accurately predicted symptom re-
ductions and the non-accurately predicted symptom reductions
were the same for both feature types. In conclusion, STN-cortex
coherence seems to condense more information in a lower num-
ber of features, but power and coherence do not seem to be inde-
pendent sources of information.

The same analysis revealed that both STN power and STN-cortex
coherence predicted the reduction of akinesia/rigidity best. This
might be due to the known link between akinesia and (beta) os-
cillations [61], and could additionally reflect common properties of
the group under study. A certain level of akinesia and rigidity
reduction was common to all patients, whereas only a subset of
patients showed marked tremor and/or axial symptoms. Because
learning occurred across subjects, oscillation-outcome relation-
ships shared among patients were learned the best.

4.5. Limitations

While an analysis of feature importance can reveal new insights,
it should be interpreted with caution. Identifying causal relation-
ships is generally not possible with this approach [62]. Any feature
related to DBS outcome might be so via correlation with other
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features or unobserved variables, i.e. a feature important to the
model is not necessarily important to the brain. This aspect is
particularly relevant with regard to a possible pathophysiological
role of high-frequency coupling, which requires further
investigation.

Finally, a sample size of 36 patients is large for a MEG-LFP study
(as far as we know, this is the largest sample so far) but it is not at all
large for a machine learning study. Future studies should aim at
including more data, potentially by fostering data sharing.

5. Conclusions and outlook

It is possible to predict DBS outcome based on subthalamic os-
cillations and their synchrony with cortical oscillations. Future
studies may investigate whether this link between electrophysi-
ology and clinical improvement can be leveraged to improve lead
placement and/or contact selection.
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