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� Brain activity allows for distinguishing Parkinsonian tremor from voluntary movements.
� Subthalamic nucleus activity alone is not sufficient for the distinction; cortical data is required for this.
� Dopaminergic medication does not affect classification performance.
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Objective: To distinguish Parkinsonian rest tremor and different voluntary hand movements by analyzing
brain activity.
Methods: We re-analyzed magnetoencephalography and local field potential recordings from the subtha-
lamic nucleus of six patients with Parkinson’s disease. Data were obtained after withdrawal from
dopaminergic medication (Med Off) and after administration of levodopa (Med On). Using gradient-
boosted tree learning, we classified epochs as tremor, fist-clenching, forearm extension or tremor-free
rest.
Results: Subthalamic activity alone was insufficient for distinguishing the four different motor states
(balanced accuracy mean: 38%, std: 7%). The combination of cortical and subthalamic features, in con-
trast, allowed for a much more accurate classification (balanced accuracy mean: 75%, std: 17%). Adding
a single cortical area improved balanced accuracy by 17% on average, as compared to classification based
on subthalamic activity alone. In most patients, the most informative cortical areas were sensorimotor
cortical regions. Decoding performance was similar in Med On and Med Off.
Conclusions: Electrophysiological recordings allow for distinguishing several motor states, provided that
cortical signals are monitored in addition to subthalamic activity.
Significance: By combining cortical recordings, subcortical recordings and machine learning, adaptive
deep brain stimulation systems might be able to detect tremor specifically and to respond adequately
to several motor states.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction accepted and effective, it also has significant side-effects (Zarzycki
Deep brain stimulation (DBS) is a widely used treatment for
advanced Parkinson’s disease (PD) (Krauss et al., 2021). While well
and Domitrz, 2020) most of which result from current spread to
structures adjacent to the DBS target (Koeglsperger et al., 2019).
Hence, a general strategy for reducing side-effects is to reduce
the energy applied in DBS. One way to achieve this while maintain-
ing clinical benefits is to adapt stimulation to the current motor
state. This approach is called adaptive DBS (Krauss et al., 2021;
Meidahl et al., 2017; Neumann et al., 2019). Various signals can
be used to control either the onset or the amplitude of DBS
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(Marceglia et al., 2021). Currently, the most investigated neural
control signal is subthalamic beta band activity (Little et al.,
2016, 2013; Piña-Fuentes et al., 2017; Tinkhauser et al., 2017),
but other signals have also been considered, such as cortical
gamma band activity (Gilron et al., 2021; Swann et al., 2018) or
local evoked potentials (Dale et al., 2022).

Adapting DBS to the current motor state makes sense for treat-
ing tremor, particularly, because tremor is highly variable, waxing
and waning spontaneously. In case of tremor, one natural strategy
for adaptive DBS is to monitor tremor directly by means of periph-
erals such as accelerometers or electromyography (Cagnan et al.,
2017; Cernera et al., 2021; Malekmohammadi et al., 2016). This
approach, however, requires additional hardware and thus raises
additional security and compliance issues.

An alternative strategy is to use brain signals rather than periph-
erals. It is known that Parkinsonian rest tremor originates in the
brain (Milosevic et al., 2018), involving an extended subcortico-
cortical network including the basal ganglia, cerebellum, thalamus
and motor cortex (Helmich, 2018; Timmermann et al., 2003). Thus,
it should be feasible to track tremor by monitoring its neural corre-
lates. Several studies have investigated subcortical correlates by
analyzing local field potentials (LFPs) recorded from DBS electrodes
and identified numerous tremor-related changes, such as an
increase of power at individual tremor frequency (Hirschmann
et al., 2013a), a beta power decrease (Qasim et al., 2016; Wang
et al., 2005), an increase of low gamma power (Beudel et al.,
2015), and a shift of power in the very high frequency range
(Hirschmann et al., 2016). While these studies were able to distin-
guish tremor from tremor-free rest periods, no study has been able
to distinguish PD rest tremor from voluntary hand movements so
far. When applying adaptive DBS in practice, it would be desirable
to make this distinction to reduce unnecessary stimulation.

In this study, we re-analyzed simultaneous recordings of fore-
arm EMG, magnetoencephalography (MEG) and subthalamic
nucleus LFP data, obtained from tremor-dominant PD patients,
aiming to distinguish between PD rest tremor, self-paced fist-
clenching, static forearm extension and tremor-free rest periods
(referred to as ‘‘quiet” episodes from here on), by means of
gradient-boosted tree learning, a popular method in machine
learning. We show that these motor states can be distinguished
when considering cortical and subthalamic data.

2. Methods

2.1. Participants

In this study we used a subset of previously collected data
(Hirschmann et al., 2013a). We selected patients with enough data
for comparing rest tremor, quiet episodes, and two motor tasks
(see below). Recordings from 6 patients met these requirements.
We the kept participant identifiers consistent with (Hirschmann
et al., 2013a). Overall, we had 11 datasets (5 subjects in Med On
and Med Off, one subject in Med Off only; see Table 1).

All patients involved were diagnosed with idiopathic PD, and
underwent DBS surgery the day before measurement. They experi-
enced spontaneous waxing and waning of rest tremor during the
recordings. Patient details are provided in Table 1. The study was
approved by the ethics committee of the Medical Faculty of the
Heinrich Heine University Düsseldorf (Study No. 3209). It was car-
ried out in accordance with the Declaration of Helsinki and
required written informed consent.

2.2. Recordings

Patients were recorded one day after subthalamic nucleus (STN)
electrode implantation with leads still externalized. All but one
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patients were recorded in two sessions: one session OFF oral
dopaminergic medication for at least 12 h and one session ON
medication; one patient had only the OFF medication session
recorded. Subcutaneous apomorphine administration was paused
1.5–2 h before measurements started. Each session contained four
parts: rest, motor task 1, rest, motor task 2. Rest periods lasted
5 min. Motor task 1 was static forearm extension (‘‘hold”) and
motor task 2 was self-paced fist-clenching (‘‘grasp”) at approxi-
mately 1 Hz (Hirschmann et al., 2013b). Movements were per-
formed with the symptom-dominant body side in five 1-min
blocks which were interleaved by 1 min pauses to avoid fatigue.
During rest and between the blocks of voluntary movement tremor
appeared and disappeared spontaneously.

Local field potentials from the STN, the magnetoencephalogram
(MEG; Vectorview, MEGIN) and the surface electromyogram (EMG)
of the extensor digitorum communis and flexor digitorum superfi-
cialis muscles of both upper limbs were recorded simultaneously.
The sampling rate was 2000 Hz. DBS electrodes were connected to
the amplifier of the MEG system by externalized, non-
ferromagnetic leads. Electrode contacts were referenced to the left
mastoid and rearranged to a bipolar montage offline by subtracting
signals from neighboring contacts. EMG electrodes were refer-
enced to surface electrodes at the muscle tendons. A hardware fil-
ter was applied with a pass-band of 0.1–660 Hz.
2.3. EMG labeling

The hand performing the voluntary movements showed inter-
mittent rest tremor in all subjects. In order to label the data,
EMG data was 10 Hz high-pass filtered, rectified and smoothed
with a 100 ms box-filter. Quiet periods were identified semi-
automatically. Epochs with both EMG channels (forearm flexor
and extensor) deflecting less than their respective 40% quantiles
(computed using the data from the entire recording) were labeled
as candidate quiet periods automatically and then adapted manu-
ally. Tremor and voluntary movements were labeled manually.
Epochs with uncertain labels, as well as postural and kinetic tre-
mor were discarded. When possible, ‘‘safety offsets” were included
to ensure that different behavioral states were separated by at
least 1 s to mitigate the risk of confusing states (Fig. 1A). The
amount of data available per motor state is provided in Table 2.
Among the epochs with tremor, the proportion of bilateral tremor
was 70% (std = 36%) in the medication OFF condition and 61%
(std = 40%) in the medication ON condition.
2.4. Electrode localization

The placement of DBS electrodes was reconstructed with the
Lead-DBS software package; (Horn and Kühn, 2015) from preoper-
ative MR and postoperative CT images (Fig. 1B). This was not pos-
sible for two out of six patients due to noisy CT images.
2.5. Preprocessing

The MEG sensor data and LFP data were resampled to 256 Hz to
increase computation speed. MEG artifacts were identified as time
periods when sensor data deflected more than 2.5 times the sig-
nal’s 95%-trimmed mean in multiple sensors. Spatiotemporal sig-
nal space separation (Taulu and Simola, 2006) with a 10 s time
window was applied to the MEG data, using the MNE toolbox
(Gramfort et al., 2014). LFP artifacts were identified as periods with
strong broadband modulation of the signal.



Table 1
Patient data. In the ‘‘Electrode model” column, M: 4-contact, non-segmented electrode by Medtronic (model 3389), S: 4-contact, non-segmented electrode by St. Jude Medical.

subj Sex Age (y) Disease duration (y) Tremor frequency (Hz) Electrode model Medication states recorded

S01 m 65 8 4 M ON, OFF
S02 m 69 6 3.5 M ON, OFF
S03 m 68 11 3 M OFF
S04 m 68 2 4 S ON, OFF
S05 m 52 11 6 S ON, OFF
S07 m 59 6 4.5 M ON, OFF

Fig. 1. Data labelling and electrode placement. A. Labeling of behavioral states in forearm EMG, state transition examples. B. Localization of deep brain stimulation (DBS)
electrodes for four out of six patients. For two other patients (S02 and S03) the CT image quality was not sufficient for localization.

Table 2
Amount of data per motor state in seconds and balanced accuracy (bacc) in percent, for the feature set consisting of Hjorth activity of the best local field potential (LFP) channel
and all cortical areas. The last column identifies the hand that was used to define the behavioral states. The amount refers to data used for classification, i.e. after discarding
artifacts. N/A = not available.

subject tremor medication OFF bacc tremor medication ON bacc hand

quiet hold grasp quiet hold grasp

S01 240 384 307 238 91% 13 584 282 219 81% left
S02 413 423 186 310 95% 350 169 311 320 79% left
S03 16 434 335 253 45% N/A N/A N/A N/A N/A left
S04 56 403 252 119 73% 54 426 279 94 64% left
S05 353 510 121 324 89% 18 539 293 261 87% right
S07 77 451 258 236 47% 427 328 284 286 83% left
mean 192.5 434.2 243.2 246.67 73% 172.4 409.2 289.8 236 78%
std 167.19 43.92 78.74 72.828 22% 199.77 167.3 12.95 87.51 8%
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2.6. Source reconstruction

For forward modelling, we made use of realistic, single-shell
head models based on the individual, T1-weighted MR image
(Nolte, 2003). Source reconstruction was performed by means of
Linearly Constrained Minimum Variance beamforming, as imple-
mented in the Fieldtrip toolbox (Oostenveld et al., 2011). The
beamformer grid contained 567 locations, spread out evenly across
the cortical and cerebellar surface. It was aligned to Montreal Neu-
rological Institute space, allowing for grid parcellation into 30
supersets of regions defined in the Automatic Anatomic Labeling
atlas (Tzourio-Mazoyer et al., 2002). For the computation of the
spatial filter, we used only the quiet periods without artifacts.
For beamformer regularization, the lambda parameter was set to
0.1% of the maximum eigenvalue of the covariance matrix com-
puted on the quiet periods.

2.7. Feature engineering

For feature engineering, the data were separated into 1 s-long
disjoint windows, i.e. the temporal resolution was 1 s. Windows
containing MEG or LFP artifacts were discarded. The number of
windows per dataset averaged across subjects and medication con-
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ditions after artifact and uncertain EMG state rejection was 1112
(std = 172), whereas total recording duration (without artifact
rejection) was 1638 s (std = 168 s). For each window, we computed
the logarithm of Hjorth activity, equal to windowed signal variance
(Hjorth, 1970). The logarithm served to bring the data distribution
closer to normal. For the source-reconstructed data, we averaged
Hjorth activity across all grid points belonging to the same cortical
parcel to obtain one feature per cortical area and time window.
Hjorth activity x tð Þð Þ ¼ var x tð Þð Þ
The use of Hjorth activity rather than spectral power or connec-

tivity was motivated by the intention to compare decoding perfor-
mance across brain areas while keeping the number of features as
low as possible to avoid overfitting. Thus, we preferred metrics
without frequency-resolution, uniquely associated with a single
area. Our analysis choices were guided by the work of Yao et al.
who performed a detailed investigation of the optimal choices for
automated tremor detection (Yao et al., 2020). The authors tested
several features and identified Hjorth activity as one of the most
useful features. Further, they found XGBoost to be the best per-
forming machine learning model among several candidates, and
1 s to be a good window size.
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2.8. Machine learning

To predict the four different motor states from Hjorth activity,
we performed 4-label classification on the windowed data using
5-fold, shuffled cross-validation. The XGBoost algorithm was used
to perform the classification. XGBoost is an advanced decision-
tree-based algorithm, widely used machine learning (Chen and
Guestrin, 2016). It often provides better results than linear models
and requires relatively small amounts of training data. Since the
number of windows differed substantially between behavioral
states both within and between subjects (Table 2), we used bal-
anced accuracy, defined as the mean of sensitivity and specificity
averaged across classes, as a measure of performance (Kelleher
et al., 2020). When training the model, we used oversampling via
imbalanced-learn toolbox (Lemaître et al., 2017) to artificially bal-
ance classes. The entire python & Matlab pipeline code (including
preprocessing, source reconstruction and machine learning) is
available at the code repository https://github.com/todorovdi/
ContBehFeatExplorer.
2.9. LFP channel selection and hyperparameter tuning

For each subject, we performed single-feature classification for
each LFP channel separately and selected the channel with best
out-of-sample performance. Similarly, hyperparameter tuning
was done by sampling combinations of the XGboost parameters
max_depth, min_child_weight, subsample and eta and selecting the
combination giving the best 5-fold cross-validated balanced accu-
racy. Neither LFP channel selection nor tuning had a strong effect
on performance. All selected LFP channels were located contralat-
eral to movement, except for patient S05.
3. Results

3.1. Distinguishing movements based on STN activity

We investigated how well the different motor states could be
distinguished based on subthalamic activity alone. Fig. 2 shows a
confusion matrix for each subject and medication state, providing
discrimination performance for each pair of movements. STN activ-
ity alone turned out to be a rather weak predictor of movement
type. In medication OFF (N = 6), the average percentage of correctly
classified windows was 62% for quiet (std = 5%), 32% for rest tremor
(std = 19%), 34% for hold (std = 16%), and 23% for grasp (std = 27%).
The most common misclassification was labeling tremor as hold
(mean number of cases = 22%, std = 9%). The least common mis-
classification was labeling tremor as grasp (mean = 8%, std = 8%).
Random shuffling of labels lowered performance, demonstrating
that the STN did provide relevant information (Table 3).

Levodopa did not have a strong influence on movement dis-
crimination (Table 3). Balanced accuracy did not differ significantly
between medication states (p = 0.7, all vs. all, independent t-test,
NOFF = 6, NON = 5).

In addition to the multiclass problem, we tested how well our
approach can discriminate tremor from any other movement, as
this classification is relevant for tremor therapy through adaptive
DBS. When merging quiet, hold and grasp epochs into a single
non-tremor class, we obtained balanced accuracy of 59% in the
Med Off state (std = 8%) and 58% in Med On (std = 6%; Table 2).
When discriminating merely between rest tremor and quiet, accu-
racy was 64% in Med Off (std = 4%) and 60% in Med On (std = 7%).
This performance is similar to previous papers dealing with tremor
vs. quiet (Hirschmann et al., 2017; Yao et al., 2020), taking into
account that they reported regular, not balanced accuracy.
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3.2. Distinguishing movements based on STN and cortical activity

When classifying epochs based on both subthalamic activity
and the activity of all cortical parcels, we observed a strong
increase in performance (average performance gain: 37%; Table 3
and Fig. 3). In medication OFF (N = 6), the average percentage of
correctly classified epochs was 74% for quiet (std = 21%), 58% for
rest tremor (std = 36%), 80% for hold (std = 12%), and 81% for grasp
(std = 18%). The most common misclassification was labeling tre-
mor as hold (mean = 22%, std = 31%). The least common misclassi-
fication was labeling rest tremor as grasp (mean = 1%, std = 1%). As
in the STN-only case, random shuffling of labels lowered perfor-
mance, lowering the number of classes increased performance,
and medication had little influence on performance (p = 0.63, t-
test; see Table 3).

When the model was trained across rather than within subjects,
performance of all-to-all classification using STN LFP and MEG data
dropped considerably, to 24% in medication OFF and to 28% in
medication ON condition (compare Table 3), suggesting that
movement-specific neural signatures vary across patients. When
the model was trained on medication OFF data and tested on med-
ication ON data of the same patient, mean balanced accuracy
dropped to 31% (std = 12%). ON to OFF generalization was compa-
rably poor (mean balanced accuracy = 23%, std = 4%), suggesting
that movement-specific neural signatures vary across medication
states as well.

3.3. STN-cortex two-feature models

While it would be difficult for an adaptive DBS system to mon-
itor the entire cortex, it is feasible to monitor the STN and individ-
ual cortical areas (Gilron et al., 2021; Opri et al., 2020). Thus, we
investigated the performance gain achieved by adding the activity
of a single cortical area to STN activity as a second feature. Fig. 4
shows a brain map of the performance gain. In most cases, senso-
rimotor cortical areas added the most information.

Adding a single cortical area was usually enough to cover much
of the total gain achievable by adding all cortical areas (Fig. 5).
Adding all remaining cortical areas to the STN-cortex two-feature
models as additional features led to an average performance
increase of only 10% (std 11%) compared to the two-feature model.

The spatial distribution of information was not particularly lat-
eralized. The single most informative cortical area was not always
on the contralateral side with respect to movement, and adding all
contralateral areas to STN activity did not consistently yield higher
accuracy than adding all ipsilateral areas (Fig. 5). In this context, it
is important to note that the non-moving hand was trembling in
some of the patients and epochs. This likely contributes to the
bilateral patterns.
4. Discussion

In this paper, we demonstrate the feasibility of distinguishing
tremor from voluntary movements of the same hand. We found
that LFP recordings from the STN are not sufficient for this distinc-
tion. It becomes possible, however, when considering additional
cortical signals.

4.1. Previous studies

Distinguishing different movements in neural recordings has
been the aim of several brain-computer interface studies, typically
addressing cortical activity, as measured by EEG (Xu et al., 2021) or
electrocorticography (ECoG) (Volkova et al., 2019). More recently,
the possibility of recording subcortical activity in the context of
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Fig. 2. Distinguishing movements based on subthalamic activity. Confusion matrices for Med Off and On per subject, averaged across cross-validation folds. The color bar
shows the overall maximum and minimum, the maximum of all off-diagonal entries and the minimum of all diagonal entries, and the session-average chance level.

Table 3
Balanced accuracy, group results. ‘‘Shuffled” performance is 90% percentile of balanced accuracies obtained from 100 permutations of class labels. STN = subthalamic nucleus;
LFP = local field potential.

Med Data: STN LFP alone mean, % std, % Med Data: STN LFP + MEG mean, % std, %

classification shuffling classification shuffling

OFF all vs. all no 38 8 OFF all vs. all no 73 22
OFF all vs. all yes 26 1 OFF all vs. all yes 25 1
OFF trem vs. all other no 59 8 OFF trem vs. all other no 78 19
OFF trem vs. all other yes 50 0 OFF trem vs. all other yes 50 0
OFF trem vs. quiet no 64 4 OFF trem vs. quiet no 80 16
OFF trem vs. quiet yes 51 1 OFF trem vs. quiet yes 50 0

ON all vs. all no 40 8 ON all vs. all no 79 9
ON all vs. all yes 26 0 ON all vs. all yes 25 1
ON trem vs. all other no 59 6 ON trem vs. all other no 86 8
ON trem vs. all other yes 50 0 ON trem vs. all other yes 50 0
ON trem vs. quiet no 60 8 ON trem vs. quiet no 87 8
ON trem vs. quiet yes 51 1 ON trem vs. quiet yes 51 1
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DBS has facilitated classification studies in basal ganglia and thala-
mus, most of which deal with movement detection, i.e. the distinc-
tion between movement and rest. Loukas and Brown were the first
to decode the onset of voluntary movements from subthalamic
activity (Loukas and Brown, 2004). Several other studies aimed
for tremor detection, due to its relevance for adaptive DBS
(Bakstein et al., 2012; Camara et al., 2015; Hirschmann et al.,
2017; Shah et al., 2018; Yao et al., 2020). Our group has previously
applied Hidden Markov Modelling to STN LFPs, using a superset of
the data analyzed here (Hirschmann et al., 2017). Spontaneously
occurring PD rest tremor was detected with an average sensitivity
of 70% and a specificity of 89%. Yao et al. achieved a sensitivity of
89% and a specificity of 50%, using XGBoost and Kalman filtering
of selected input features (Yao et al., 2020). The same group later
demonstrated the feasibility of XGBoost tremor detection on chip,
facilitating its integration into small, battery-powered neurostimu-
lators (Zhu et al., 2020).Tremor detection has also been demon-
strated for thalamic LFPs recorded in ET patients (Tan et al.,
2019), including the feasibility of conditioning DBS on these signals
under laboratory conditions (He et al., 2021).
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In this study, we obtained comparable tremor detection perfor-
mance for the multi-feature case (STN + cortex). Importantly, this
work goes a step further by distinguishing between tremor,
tremor-free rest, self-paced fist-clenching and static forearm
extension.

4.2. Clinical implications

Distinguishing between tremor and voluntary hand movements
of the same limb based on brain activity is a challenging task,
which has both clinical and basic science implications. From a clin-
ical perspective, mastering this task would allow for better adapta-
tion of DBS to the current situation, as it would reduce unnecessary
stimulation occurring when an adaptive DBS system confuses vol-
untary movement, or dyskinesia, with tremor. Unnecessary stimu-
lation is not only a waste of energy, but might contribute to
maladaptive changes in response to DBS (Reich et al., 2016). In
addition, an unnecessary sudden onset of stimulation or a sudden
amplitude increase may interfere with fine motor control, as both
may elicit transient side-effects such as paresthesia.



Fig. 3. Distinguishing movements based on subthalamic and cortical activity. Confusion matrices for Med On and Med Off per subject, averaged across cross-validation
folds. The color bar shows the overall maximum, the maximum of all off-diagonal entries and the minimum of all diagonal entries, and the session-average chance level.
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4.3. Neuroscientific implications

From a basic science perspective, it is warranted to understand
the neurophysiological differences between voluntary and non-
voluntary movements such as tremor. Tremor and voluntary
movement share a common oscillatory signature, characterized
by beta desynchronization and gamma synchronization (Beudel
et al., 2015; Pfurtscheller et al., 2003; Qasim et al., 2016; Wang
et al., 2005). While this pattern is very robust, it signals the pres-
ence of any movement rather than what movement is being exe-
cuted, nor whether the movement is voluntary or not. The latter
question is highly interesting for general neuroscience and has
been addressed by contrasting tremor and mimicked tremor.
Although some differences emerged, there were generally more
similarities than differences (Muthuraman et al., 2018, 2012).
Hence, there is currently no consensus on the neural mechanisms
underlying involuntary movement and hence no compelling expla-
nation of why tremor cannot be stopped at will.

Even without a neural correlate of volition, it may be possible to
distinguish tremor from other movements based on brain signals.
A smart DBS system could simply try to detect oscillatory move-
ments of a certain frequency and assume tremor, as rhythmic
movements of this kind are rarely voluntary. This appears to be a
feasible approach, given the presumably unique neural correlates
of such movements, such as an increase of power at individual tre-
mor frequency (Hirschmann et al., 2013a; Pollok et al., 2004;
Timmermann et al., 2003). The characteristic kinematics of tremor
and its reflection in brain activity is most likely the reason why
were able to distinguish it from other movements here. Note, how-
ever, that our approach was based on Hjorth activity, which is not
frequency-resolved. Thus, knowing the individual tremor fre-
quency is not necessary for tremor discrimination.

4.4. Movement-related information in STN and cortex

One of the key findings of this paper is that cortical signals can
dramatically increase tremor discrimination. This observation tal-
lies with recent studies in PD patients decoding grip force from
151
STN and primary motor cortex, the latter recorded through intra-
operative ECoG (Merk et al., 2022; Peterson et al., 2023). Both stud-
ies achieved much better predictions when using cortical signals,
as compared to subthalamic signals. The authors restrained from
drawing conclusions about the information content of cortex ver-
sus STN because ECoG signals have a better signal-to-noise ration
than recordings made with a DBS electrode, which might explain
the difference in performance. In our case, however, the invasive
deep brain recording is generally considered to have better
signal-to-noise ratio than the noninvasive MEG, suggesting that
the STN might not be the optimal brain area for inferring the kind
of movement being performed. In fact, a number of studies indicate
that the basal ganglia control movement vigor, i.e. the strength and
velocity of a movement, rather than being concerned with move-
ment coordination (Dudman and Krakauer, 2016; Lofredi et al.,
2018; Turner and Desmurget, 2010; Yttri and Dudman, 2016). This
may imply that STN activity is more useful for predicting grip force
(Merk et al., 2022; Shah et al., 2018) than movement type.

While the observations discussed above are in line with the
poor decoding of movement type based on STN activity alone, as
observed here and in a different analysis of the same data
(Hirschmann et al., 2017), it is challenged by recent findings of Gol-
shan and colleagues, who managed to decode different voluntary
movements from STN LFPs with accuracies of up to 90% (Golshan
et al., 2020, 2018). These studies did not investigate tremor, how-
ever, and the approach requires knowing when a movement is ini-
tiated. This information, of course, would not be available when
applying adaptive DBS in practice.

So as of now, it seems that any smart DBS system that needs
know to more about a patient’s motor state than whether or not
the patient is at rest would likely profit substantially from external
information, such as peripherals (Cagnan et al., 2017; Cernera et al.,
2021; Malekmohammadi et al., 2016) or electrodes in additional
brain areas. If so, how many and which brain areas should be mon-
itored? Our results suggest that a few areas suffice for distinguish-
ing tremor from voluntary movement and between different
voluntary movements. Unsurprisingly, primary and premotor
areas were found to be most useful, although other areas con-



Fig. 4. Gain of using cortical activity in addition subthalamic nucleus activity. The balanced accuracy achieved with subthalamic activity alone is provided in the headings
(‘‘LFP perf”). Colors code the improvement (in %) obtained by adding the activity of an individual cortical brain area as a second feature. LFP = local field potential.
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tributed information as well. Thus, a system monitoring both STN
and motor cortex appears promising for real-time motor state dis-
crimination in PD.

In fact, such systems have already been tested both in-clinic and
at home. Using an implantable DBS system capable of recording
neural activity and a combination of deep brain electrodes and cor-
tical strip electrodes placed on primary motor cortex, Gilron et al.
found that conditioning STN DBS on cortical gamma oscillations
increased the time spent in the Med On/Stim On state without
experiencing dyskinesia (Gilron et al., 2021). This is a crucial find-
ing, since reducing stimulation-induced side effects is a key pro-
mise of adaptive DBS. Using a similar approach, Opri et al.
demonstrated that conditioning thalamic DBS on motorcortical
low-frequency activity is as effective for suppressing essential tre-
mor as standard DBS, despite delivering less energy (Opri et al.,
2020).
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4.5. Generalizability of movement decoding

To be useful in practice, a decoding approach needs to work
equally well in different situations, e.g. before and after intake of
anti-Parkinsonian medication. In agreement with (Golshan et al.,
2020), we obtained similar decoding performance in medication
On and Off. This needs to be tested further, however, in light of
recent findings linking decoding performance to motor impair-
ment (Merk et al., 2022; Peterson et al., 2023), which is closely
linked to dopamine availability. Although it was possible to
achieve decent decoding in both medication states, each state
required a different decoder. While this is clearly suboptimal for
clinical application, it may turn out to be a minor hurdle, as PD
patients rarely reach a complete OFF state when medicated prop-
erly. In practice, an ON-state decoder might suffice for most
patients.



Fig. 5. Most informative cortical areas and lateralization of information. Bar height indicates the performance difference with respect to the STN-only case, with original
(blue) and shuffled class labels (red). Uppermost bar: best combination of one STN feature and one cortical feature. Second bar: best single cortical feature (STN not used). The
lower three bars illustrate the gain of adding all cortical areas (both hemispheres), only the ipsilateral areas (with respect to the moving hand) and only the contralateral
areas, respectively. LFP = local field potential; STN = subthalamic nucleus.
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Ideally, a decoderwouldnot only generalize to different dopamine
levels but also to different patients. As in almost all previousworks on
this topic (but see Hirschmann et al., 2022), our approach required
within-patient training, i.e. a decoder working in one patient does
not necessarily work in another. Tuning the decoder to a new patient
requires individual, electrophysiological data from theDBS target and
cortex.While thisseemed infeasiblea fewyearsago, theadventofnew
DBS systems capable of recording brain signals in addition to deliver-
ing stimulation has made this scenario more realistic (Jimenez-
Shahed, 2021). Note, however, that a general decoder would still be
preferable from both a practical point of view (no tuning necessary)
and a basic science perspective because only general decoders allow
for conclusions on the general mechanism of tremor.

4.6. Limitations

One obvious limitation of this work is that we did not detect tre-
mor in real-time nor condition DBS on tremor. In addition, the per-
formance achieved here is not enough for clinical application,
although much better than chance, as evidenced by the decline
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caused by shuffling class labels randomly. Moreover, due to a lim-
ited amount of data, parts of the training data were close in time
to parts of the test data, which might cause overfitting in the pres-
ence of temporal autocorrelation. In this scenario, the classifier
groups epochs based on their closeness in time rather than their
movement class. This potential confound can be mitigated in larger
datasets by requiring e.g. a certain distance in time between all
train and test epochs.

Further, the cortical signal was recorded with MEG rather than
ECoG. While MEG has much worse spatial resolution, it offers
whole-brain coverage. This allows us to exclude movement arti-
facts as the true source of information because artifacts have a dif-
ferent topography than the information maps provided here
(Kandemir et al., 2020). While we found most information in sen-
sorimotor regions, DBS hardware-related artifacts are centered on
the adapter for the externalized lead (right parietal and right tem-
poral regions) whereas movement-related MEG artifacts are stron-
gest close to the moving limb.

Finally, we included only men in this re-analysis because they
happened to fulfill the inclusion criteria accidentally (spontaneous
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waxing and waning of tremor in the limb used in the motor task
and presence of both hold and grasp movements in the recordings).
Hence, we cannot be sure that our findings are transferable to
females. Yet, we see no reason for assuming sex differences.

4.7. Conclusions

PD rest tremor can be distinguished from voluntary hand move-
ments when considering subthalamic and cortical signals. This dis-
tinction is possible regardless of the dopamine level.
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